Nucleomorph genomes: structure, function, origin and evolution.
نویسنده
چکیده
The cryptomonads and chlorarachniophytes are two unicellular algal lineages with complex cellular structures and fascinating evolutionary histories. Both groups acquired their photosynthetic abilities through the assimilation of eukaryotic endosymbionts. As a result, they possess two distinct cytosolic compartments and four genomes--two nuclear genomes, an endosymbiont-derived plastid genome and a mitochondrial genome derived from the host cell. Like mitochondrial and plastid genomes, the genome of the endosymbiont nucleus, or 'nucleomorph', of cryptomonad and chlorarachniophyte cells has been greatly reduced through the combined effects of gene loss and intracellular gene transfer. This article focuses on the structure, function, origin and evolution of cryptomonad and chlorarachniophyte nucleomorph genomes in light of recent comparisons of genome sequence data from both groups. It is now possible to speculate on the reasons that nucleomorphs persist in cryptomonads and chlorarachniophytes but have been lost in all other algae with plastids of secondary endosymbiotic origin.
منابع مشابه
Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata
Many algal groups acquired complex plastids by the uptake of green and red algae through multiple secondary endosymbioses. As a result of gene loss and transfer during the endosymbiotic processes, algal endosymbiont nuclei disappeared in most cases. However, chlorarachniophytes and cryptophytes still possess a relict nucleus, so-called the nucleomorph, of the green and red algal endosymbiont, r...
متن کاملReduced nuclear genomes maintain high gene transcription levels.
Reductive genome evolution is seen in organisms living in close association with each other, such as in endosymbiosis, symbiosis, and parasitism. The reduced genomes of endosymbionts and parasites often exhibit similar features such as high gene densities and A+T compositional bias. Little is known about how the regulation of gene expression has been affected in organisms with highly compacted ...
متن کاملNucleomorph Genome Sequence of the Cryptophyte Alga Chroomonas mesostigmatica CCMP1168 Reveals Lineage-Specific Gene Loss and Genome Complexity
Cryptophytes are a diverse lineage of marine and freshwater, photosynthetic and secondarily nonphotosynthetic algae that acquired their plastids (chloroplasts) by "secondary" (i.e., eukaryote-eukaryote) endosymbiosis. Consequently, they are among the most genetically complex cells known and have four genomes: a mitochondrial, plastid, "master" nuclear, and residual nuclear genome of secondary e...
متن کاملNucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function.
Nucleomorphs are the remnant nuclei of algal endosymbionts that took up residence inside a nonphotosynthetic eukaryotic host. The nucleomorphs of cryptophytes and chlorarachniophytes are derived from red and green algal endosymbionts, respectively, and represent a stunning example of convergent evolution: their genomes have independently been reduced and compacted to <1 megabase pairs (Mbp) in ...
متن کاملComplete Nucleomorph Genome Sequence of the Nonphotosynthetic Alga Cryptomonas paramecium Reveals a Core Nucleomorph Gene Set
Nucleomorphs are the remnant nuclei of algal endosymbionts that were engulfed by nonphotosynthetic host eukaryotes. These peculiar organelles are found in cryptomonad and chlorarachniophyte algae, where they evolved from red and green algal endosymbionts, respectively. Despite their independent origins, cryptomonad and chlorarachniophyte nucleomorph genomes are similar in size and structure: th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioEssays : news and reviews in molecular, cellular and developmental biology
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2007